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e ABSTRACT
ies {n the The possibility that muons may be used in a future generation of high-
1986, energy high-luminosity u* s~ and u-p colliders is presentea. The problem of

collecting and cooling high-intensity muon bunches is discussed and ioniza-
tion cooling is described. High-energy collider scenarios are outlined; muon
colliders may become superior to electron colliders in the multi-TeV energy
range.

INTRODUCTION

Progress in the understanding of elementary particle physics has re-
quired continuing increases in accelerated beam energies. Currently, the
highest energy colliders are proton-(anti) proton (p-p or p-p and electron-
positron machines, and both approaches have significant di culties in the
extension to higher energies,

Protons are composite objects, so only a small fraction of the total en-
ergy participates in a collision; this [raction decreases as energy increases.
Also, production of new particle states is masked by a large background of
nonresonant events; identification of new physics becomes increasingly dif-
ficult with increasing energy. The et—e~ collisions have had the advantage
of providing simple, single-particle interactions with little background, and
et—e~ storage rings have been the principal tool in the exploration of high-
energy resonances (¥, T, Z,). However, synchrotron radiation causes energy
loss aceording to

AE _ 4ne? (__E‘_)" a

turn ~ 3R \md? )} ' )
where E.e and m are Lhe particle energy, charge, and mass, and R is the ring
radius, and this energy loss prevents extension of et e~ storage rings
E = 100 GeV/ particle. Linear colliders (R — co) may reach higher energies;
but at very high energies (many TeV), they are severely limited in luminos-
ity and energy resolution by beamstrahiung, radiation during collisions, and
face great challenges in obtaining adequate luninosity at reasonable cost.
i In this paper, we describe an alternate approach that retains the high-
quality features of e*—e~ colliders. By accelerating and colliding higher mass
leptons such as muons, the advantages of ¢*—e~ colliders can be extended
into a higher energy regime (1 TeV — many PeV). The physical interactions
of muons are believed to be the same as clectrons with one difference: the
direct muon coupling into the Higgs sector is a factor (m,/m.})? lm:?er.

The principal liabilities of muons are their short lifetimes an the large
phase-space area of initial muon beams produced in r-decay. However, the
lifetime r, given by

r=2.197 % 10-‘3& s,
my,
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apm‘v density of mnoens is anbstantialy nereased by adiabatic damping in
arceleration to Inaly energy and can lrer il remsed 1-» iwmization coofimg™ * at

sorree energies, | hese dinping processes e nerease nnn Beain densities
to lewvels where highe lnniwosity e and 0 poealliders imay be possible,

MUON PRODUCTION, COLLECTION, ANID) COOLING

Presluction of Laree mnnshers of nioons is uot diffiendt in prosciple. Hadranice
=4 H [

mteractions are characterized by the prodoctiom ol Targe minnbers of plons;
aliuost all of these pions decay wiro amonn phis a uentrino, The collection
of Hhese tanns s somewhat more QifHendt, becanse pions are produced over
a hroad energy range witle transverse energaes of the arder of the plon mass,
aud = decays produce nons nver a large coergy spectrin with transverse
energies less than the pron moon mass dilference

The problem of pion prodinction and collertion s simiar to the cnrrent.
problem of eotlection: thetefore, inoa first approxamation, a stonlar device
15 sipagested 7 A Tigh-intensity proton bean s foensed onto a high-density
target, and the 1;1|'_s.{‘r_'t v follenwedd }u_v woeollecrar lensg syaten that conhnes
the pians inte a tratsport channel for injeetion tnte @ = collector rings, The
= clecay i the fransport chanel or o the eadlector provides muons that can
be stored and cooled. Ve difliendt problem of optinmtzing the g collector for
maximin inlensity is ool addressed in this paper; however, some guidelines
{or soiving the [nn}ilﬂn are segested. A st estimate of o prodoction m
proton-ladeon cotlisions may be obtained wsing the empirical formulas of
Wigp:”
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where P = P 1% the maxinnum allowed pion imomentnm, X is the plon/proton

menient i ratro, PL 15 Hlt‘ pIen trdu'«;ve-r%e momentn, and A = 2385 (1.572),

B o= 25RR (57370, AR LAY, and [y 1T2T L )4|}f01‘ positive
{negirnf‘] IHGIEN H We SRS, F‘X"T’li)(:ld'l!l" froun p (‘Il’ll'lll(’]'; Lt the ac-
ceptance of - 1 GeV plons in the decay transport ¢ hanel is of arder 200 mrad
and + 20 in momentmn, then ~ 0.0 et per primacy bigh energy proton
way he collected. This estimaie may he some wliat optimistic i the trans-
port acceptance; however, it only inehides #°s produced from primary proton-
proton collisions, Secondary ¢ oliisions may produee snbstantially more s,
particularly if the primarcy profon energy s wnch greater thau 1 GeV, —‘\lso
experimental evidence ndic ates that thie Wang tormnlas may nIulPrFSYIIndtP
= production i that regime.” I the momentiun acceptances of the o teollec-
tors are ¢ 107 with adequate transverse accepranee, then 2 10% of these
o5 may produce stared iwens, The pot souree will require strong foeusing to
ohtain a g beam wilh a nianoetinitisl emittanes ¢ 100 ¢ nug-srad).
There are many unsolved problems in developing an optimum system.
The optimunin proten energy for o produaction s not known. Wang predicts
= procduction independent of peoton energy fov F o Faoexperimental ev-
sdence shows production proportion: b L7 The = coilection shonid also
ielide prudn( Lion m secondary iterae fons and hadronic cascades. We ex-
pect that 19, = 30100 GeV for F, 1 GeVoinay be an econonne optimun,

TeV s avkequate tor rapid cveling svucheatron colliders. 2 Also. the phase-
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Also. i collection from r
jntion may include wnktitur
iy which only the decay
lujection).®
As the
we sununarize some of the
tion damping i electron s
replacing synchrotron rariation.
plaved in Fig. 1. The mion hean passe
which 1t loses energy,

principles of nmon conling, hiave |
hasgic concepls.

decay presents signific
o x decay in a straig
product uiuons are in circulating o

torage rinps with enerey

seent described elsewhere? *
The process is similar to radia-
loss in material absorbers
The hasic mechanismof g cooling is dis-
- through a jaterial medinn, in

followed by an acceleraling cavity, where it regains the

.
average longitudinal cueray loss. Energy conling oears following
HAE, 2A,
‘..l - :‘.] LTH AR
iin AE,

where AR, 18 the muon enerey devialion
ENETEY 0SS5, and 1 is the cyele nimber.
eneTgy loss I8 para
poent, but energy regain is |

tances, we obtain

o 3y,
o Ty
W 2,
foor hoth transverse degrees oof (reedom.
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Fig. 1. Sketch of “fomzation coohing”

Longit ndinal cooling depends on
Ax,
A,
which is naturally slightly posifive
tive for low-energy nas.
This slow cooling can he enhanved by
dispersiot region, where posifion is energy:
of transverse and

from the central value, &,
Transverse conling occurs hecause
Nel te tie particle trajectory
srely fongitudinal. I

foor [, =
This nuplivs that conling requires
placing s wedpe-shaped
dependent (see Fig. 2}
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Fig. 2. 1'se of wedge absorher to culiance eneray ilependence of energy loss,

Munn cooling is Limited by heating cansed by statistical fluctuations in
the nuniber and energy of muon-atom interactions. The resulting equation

for energy cooling s
|£

i
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where | is the mean energy exchange (102 V). The equation for transverse
(wj(_:ling is
e ol g

e RS 1R}
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ahere o s a correction tactor Tor snhanced iomentiin conling and @y, is
the mean scattering anele in the absorher. This equation places a preminm
ondow A, (stroug focusing) at the absorber, This constramt may unply that
an optimnm absorber wouldd be an active locnsing elenent {11 lens), which
also has relatively smiall seatierning,

Muon cooling may be used in either storage nings or linacs. A sample
caaling ring is displayed in Fig. 3. showing focusing sections lor ahsorhers
and acceleration seclions. Several stages imay he used to obtain optimuem
cooling. Reference | ontlines a two-stage system that reduces transverse
emittances of 1 eV nmons by a factor of 100 to 2.2 min-mrad, accompa-
uied by similar decreases in longitndinal phase space.

The impurtant constraint is that cooling he completed within a muon
lifetime, which can he expressed as ~ 300 B{'}) turns in a storage ring, where
8 is the mean bending field, or as a length L, 660 E,./m, meters of path
length in a linac, 'This coustraint is not insurmonntable.

APPLICATIONS OF COOLED MUONS
IN HIGH-ENERGY ACCELERATORS

Clonled muons have inagy possible uses in high-energy accelerators,
[0 this section, we empliasize applications not readily accessible to e* ma-
chines, such as colliders at < 1 'TeV energies.

The
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The ;- -~ Rapid-Cycling Coilider
ih) . . . ‘ . . .
Most collider apphications will requre a Wigh-indensity mmoen source
operading at a tregnency tgreater thau the inverse of the mnon liletine, At

D TelV, r, - 0025 50 a rapid-cveling svinchrotron operaling at {7 B

(sverse . E
ez is adequately matehed to that hifetime.

In Fig. 4, we cisplay the major components of a 1-TeV pcollider: a
rapid-eveling proten syuchirotron wit h a target (o produce ©'s,a decay chan-

Ll
nel {or stochastic mjection® into a collector ring) for r v pe decay, a storage-
s ring, linac system for p cooling. and a p linae for injection intoa rapid—cyr[ing
inm synchrotron with its penod wal ched to the protron synchrotron.
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The pt g eoilider Tuminosity Lmay be extimated nsing

fonp np ¥ N
qrd e

- 17

With 1074 primary protons per pulse and nion collection etficieney of 112

we nhtain 1017 stored ;00 which may be arganized into ip = 4 Lunelies with
N:ON = 28 o 100 per huneh, Thie cveling frequeney £ 1s 30 Hu, npois
the enn rumbser of Tnens of heany sborage 1y WL and we nse 30 - L e
arud e DL Ve Rotoobran Lo 108 e P! fora b-Fel ws e ool

lidder,

The ahtainabile husinosity s expected to inerease witl inereasing e
ety as the o fifetime mereases andd the beamn ennttance ancd momentun
spread ave adiabatically damped. The Factor < will decrense as 1/ E and
3+ ean also decrease as 1B if the foeusing is limited by peak field and leus
fength as a fraction of circumference. The eveling frequency f. decreases as
1 E as the lifetune inereases, and np cail increase sinee B, the mean bend
g Held, can be increased as the cveling frequency decrerases. Ay Uhe non
liferime jncreases, siceessive cveles of e rapid cyeling protou svachrotron
et he acetnulated i a proton collector for collectors) for pulsed bursts
atehed to the mnon Lifetine, 11 this mesde, hotte N©and N inerease pro-
portionally to B, Collecting these [actors together, we find that luuinosity
chontd inerease as 123 This sealing shonld be valid np to ~ 100 TeV {where
racliation damping may be nsed to Gither rednee emittances). At eneTries
L0 TeV . radiation exclides storage ring colliders and = @ colliding
linacs are preferred.

The j*—4  Linac-Injected Storage-Ring Collider or Linear Collider

If the present vesearch etfort s suecessinl in developing economical,
high zradient linacs, they may be wsed to aceelerate muons in linear colliders®
ot a Huace storage-ring scenarto, The linac injected storage-ring is dis-
plaved in Fig. B Separate u* and i bunches are accelerated in the linac
tor full enerey and then mjected in opposite dicections ma superconducting
storage nng {or multitnrn collisions. Tomrnosity can. in principle, be nmch
higher than m the rapid-cveling synelirotrom (L 7 107 hecause beam loss in
acceleration is greatly reduced and stronger bending field increases ur and

decreases 3w Mg (70

The p-p Collider

An importunt advantage of of g o collulers overef-e- SCEArios 1s
that the same collider may also be used for u p eallisions with both beams
at full energy. Reference 2 deseribes a techiniogue foor ji-p frequency matching.
High luinosity is relatively easity abtained becase only one beam (g7} s
nnstable, This is a probable initial operaling mode fora circular pt o eal-
Lder. Dedicated o p colliders are also possibile.
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FUTURE PROSPECTS

have so far received only initial concep-

tual developinent and require considerahly more research before implemen-
Id optimize and evaluate the pos-

ration. More detailed design stidies con

sibilities more precisely; experimental developient would also be required.
Initial experiments could determine = production, evaluate collection sys-
tems and measure g energy loss in material media. Farther experiments could
then demoustrate the possibilities and linitations of u cooling, possibly us-
ing existing facilities {p collectors, low-energy proton storage rings) in para-
sitic or dedicated modes. A detailed comparison with ol ler collider possibil-
ities {et -7, pp, vtc) wortld then be required. The enhanced coupling of u's

to the Higgs sector may help make the muon collider an attractive candidate

i a future generation of colliders.

The put—p~ {or ¢ -p} rolliders
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